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Abstract-The present study reviews the application of damage mechanics to the prediction of the
material failure caused by the evolving density of microcracks. The loss of homogeneity on the
specimen size is common to ill failure modes considered in this study. The transition between a
statistically homogeneous to a heterogeneous state of strain and damage depends on the morphology
of defect clusters, state of stress, strain rate and microstructural disorder. As a result the failure can
occur in several different ways. A rich spectrum of physical phenomena and new concepts that
emerge from these considerations demonstrates the successes and limitations of the traditional,
deterministic, and local continuum models. © 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The narrow objective of this :;tudy is to provide an overview of a class of failure modes and
shed some light on the effect that the damage has on the material failures and provide and
discuss the role of damage mechanics in the analyses of material failures. The discussion is
limited to the failure modes attributed to the critical values of effective material parameters.
The study is further limited to the materials with a relatively modest cohesive strength
that exhibit a strong disposition to microcracking. Non-crystalline rocks, concrete, glass,
ceramics, silicon, human bones, iron and most thermosets belong to this class of materials.
Finally, the discussion focuses on the crack-like defects with an atomically sharp tip
giving rise to large stress concentrations. Conceptually, if not always directly, most of the
discussion within this study is also pertinent to the materials replete with voids.

2. MATERIAL CHARACTERIZATION

With the recent advent of micromechanics "the doctrine that all observable events
must be explained as macfC> events; that is to say, as averages or summations of certain
micro events" (Popper, 1980) is widely believed to be true. However, the validity of this
"doctrine" may become debatable if the disorder on a finer scale affects the response on
the coarse scale in a manner that is not related to "averages or summations". More precisely,
the averages provide a meaningful macro-representation of the micro-events only if a set
of precisely defined conditions is satisfied.

The microstructure of an overwhelming fraction of engineering materials is geometri­
cally, topologically and chemically (structurally) disordered. A complete statistical descrip­
tion of the microstructural disorder (including a variety of micro defects) is never available
and, perhaps, only seldom required. Nevertheless, the introduction of few characteristic
lengths, which qualitatively and quantitatively define the major features of the disorder,
often suffice to examine the validity of assumptions and simplifications on which some of
the continuum and micromechanical failure models are based.

For computational effi;;iency a system is often subdivided into sub-systems (say, finite
elements). The "effective" material properties of the sub-system (or a material point in
continuum models) are determined from the orientation weighted volume averages of
different phases (inclusions) and micro-defects applying one of the mean field methods of
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micromechanics (Mura, 1982; Nemat-Nasser and Hori, 1993; Krajcinovic, 1996). The
main assumption on which these models are based is that the material is translationally
invariant, i.e. that the exact locations of each inclusion and micro-defect within a sub­
system have no effec': on the macroscopic response. Thus, the traditional mean field, local
models of mechanic~, are applicable if and only if the material and its response are stat­
istically homogeneous on a "small enough" scale.

A volume of a given material and its response are statistically homogeneous or trans­
lationally invariant (Krajcinovic, 1996) if the inequalities

(1)

are satisfied. In (1) aO is the average stress imparted to the external surfaces of the volume,
while Land Lm are the characteristic lengths of the specimen and material texture (such as
the grain size in granular materials and internodular distance in resins). Finally, ~ is the
largest length over which the defects are correlated and Lrve the characteristic length of the
representative volume element (RVE) defined as the smallest volume for which the con­
ditions (1) are satisfied (Nemat-Nasser and Hori, 1993; Ostoja-Starzewski, 1994; Krajci­
novic, 1996). Two or more defects are considered to be correlated, and form a cluster, if
their growth depends on their interaction. Hence, the correlation length is proportional to
the size of the largest duster. Naturally, sub-systems (such as finite elements) must be larger
than the RVE.

In the case when the condition (la) is satisfied the effective properties of the volume
depend on the density of active defects (including their orientation) and are independent
of the precise locations and individual sizes of heterogeneities and defects. If the second
inequality in (l) is not satisfied the exact position of a defect is important due to the fact
that the stress is not homogeneous. This condition governs the size of RVE in the case of
rapidly changing stre:;ses in the vicinity of a macrocrack tip or notch.

3. DAMAGE AND DAMAGE EVOLUTION

A crack is considered to be a microcrack if it is commensurate to the characteristic
length of the material microstructure L m . A microcrack can be either active or passive
depending on whether they support a discontinuity in the local displacement field or not.
For a given state of stress only the active cracks affect the effective material parameters and
macroscopic responst:. Hence, the damage can be measured by the effect that the active
micro-defects have on the effective material (transfer) properties. The damage evolution is
a non-equilibrium, irreversible thermodynamic process during which the total number of
bonds in the material decreases and the total area of internal surfaces is increased.

Owing to the translational invariance an ensemble of microcracks can affect the
effective properties of a statistically homogeneous volume only through their density func­
tion pictorially repre~ented by the rosette histogram (Krajcinovic, 1996). Since the direct
measurements of the radii, shapes and orientation ofeach crack in a volume are not possible
the damage in a statistically homogeneous volume can be measured indirectly by the effect
it has on the stiffness tensor.

Damage evolution is a macroscopic manifestation of the net loss of interatomic bonds
in the course of the nucleation of new and growth of the existing microcracks. A microcrack
will nucleate if the local tensile or shear stress exceeds the local nucleation strength of the
material, i.e. if a(xo) ;~ anuc(xo)·

An existing crack will start propagating when the elastic energy release rate G stored
in the vicinity of its tip exceeds the thermodynamic force R resisting its growth, i.e. when

G[a(x)] ~ R(x). (2)

The energy release rate G depends on the elastic energy and potential energy of applied
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forces. A crack can grow only if at least one of the three stress intensity factors is positive.
When all three stress intensity factors are negative a crack is dormant (does not grow) and
almost always passive since i1: does not affect local deformations and effective parameters.

The exact determination of the thermodynamic force G is a difficult proposition since
the microcracks are of irregular shapes, seldom planar, often interfacial and embedded in
a material that is neither isotropic nor homogeneous on the considered scale. The stress to
which the microcracks are subjected may also be altered by the interaction with the adjacent
microcracks and/or stress concentrations at the heterogeneities. The resisting force R
(cohesive or fracture energy) depends on the spatial distribution of energy barriers (grain
boundaries, particle of fiber reinforcement, etc.) that are strong enough to prevent or hinder
the propagation of a microcrack. Thermodynamic forces G and R also depend on the
accumulated damage. In summary, the spatial distributions of G and R are random func­
tions of coordinates in a material with a random microstructure.

The statistical aspect of the crack nucleation is related to the fact that the spatial
distribution of nucleation sites is random. The onset of crack propagation depends on the
stochastic function {G[O"(x)]j R(x)} and, therefore, on the microstructural disorder. Damage
evolution mode is influenced by the stress concentration at microstructural heterogeneities
(hot spots, large 0" or G) and internal surfaces of inferior cohesive (fracture) strength (weak
links, small O"nuc or R). Stres!; distribution is, at larger damage concentrations, multifractal
(Hansen and Roux, 1988; Krajcinovic, 1996). A material is damage tolerant if its micro­
structure is micro-heterogeneous, i.e. if the band-width of the distribution of ther­
modynamic forces R(x) is wide enough to arrest growing cracks. Hence, the damage can
evolve in heterogeneous materials (such as composites) by both crack nucleation and stable
growth of cracks. In contrast, microcrack growth in damage sensitive materials [with a
homogeneous microstructure characterized by a narrow band-width of the distribution of
R(x)] subjected to uniform tensile stresses is typically unstable. The probability density
function (pdf) of the force R(xo) in the material point X oof a damage tolerant and damage
sensitive solid are sketched ~:ymbolically in Fig. 1.

The damage evolution in damage tolerant materials is, at least initially, controlled by
a random nucleation of microcracks. In the absence of initial defects the stress con­
centrations are few and the band-width of the pdf of G[O"(xo)] is narrow. As the number of
defects multiplies the stress concentrations become more frequent, the band-width of the
pdfof G[O"(xo)] widens (Fig. 2) and the probability that {G[O"(xo)]jR(xo)} = 1 in Xo increases.
The depletion of weak spots makes the crack nucleation at large damage concentration less
probable. Hence, the balance tilts from the defect nucleation to defect growth. The state of
damage at which the cross-over from microcrack nucleation to a microcrack growth damage
evolution takes place depends, therefore, on the spatial dispersion of material points in
which the ratio {G[O"(x)]jR(x)} exceeds unity.

In summary, the intrinsic brittle to quasi-brittle transition depends on the size of
existing defects and the band-width of the distribution of the thermodynamic force R(x)
which characterizes the microstructural disorder and capacity of a brittle material to
dissipate the imparted energy before it fractures on the macroscopic scale (Roux and

(a) (b)

R(xo)

,---,<::--G_(XO)~'L A A
Fig. I. Distribution of thermodynamic forces G and R in the point X o of a damage tolerant (a) and

a damage sensitive solid (b).
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Fig. 2. Change of the band-width of the distribution of the thennodynamic force G in the point Xo

related to the accumulating damage D.

Hansen, 1990; Hansen and Roux, 1991; Krajcinovic, 1996). The traditional, phenom­
enological and deterministic definition of the brittle to quasi-brittle transition (Paterson,
1978), based on macroscopic observations, is strongly dependent on the specimen size and
shape and is, therefore, not always a material (intensive) parameter.

4. INTRINSIC FAILURE MODES

A failure is intrinsic if its onset is related to a critical value of an effective (intensive)
material property. Consistent to the proposed measure of damage, the onset of an intrinsic
failure mode must be a function of the volume averages of stresses and damage. Hence, a
failure is intrinsic only when the material and response in the state precursory to the failure
threshold is either statistically homogeneous or statistically self-similar. The present study
will address several different cases of intrinsic failures of materials susceptible to mic­
rocracking when subjected to the long range compressive stresses.

This study will n:view and synthesize three different modes of intrinsic failures:

(a) strain localization during which only the microcracks within a narrow band grow;
(b) percolation during which microcracks do not grow at all;
(c) creep rupture attributed to random fluctuations of temperature.

The above listed failure modes are chosen due to their intrinsic importance and the fact
that they have several aspects in common. At the same time the rate at which the correlation
length increases in these three processes is different due to the size of the volume within
which the energy available for cracking is stored. The rate of softening depends on the rate
at which the correlation length increases, i.e. on the volume within which the excess energy
(G - R) is stored. The slope of the "softening" part of the force-deformation curve is
steepest in the case of a single propagating crack since the correlation length (its length)
increases at a rate of 0.4 of Rayleigh waves and minimum in percolation when the cluster
grows rather slowly. The slope of the softening part of the force-deformation curve during
strain localization is not quite as steep, since the excess energy is stored along the entire
fault perimeter.

Finite element analyses of the growth of defect clusters in disordered materials are
prohibitive in view of necessary re-meshing and formation of a representative statistical
sample. Limiting the scope to qualitative analyses two-dimensional lattices of modest sizes
proved to be very valuable in estimating the effect of the disorder on the onset of failure
and post-failure response.

4.1. Strain localization
In a typical, deformation controlled, strain localization test [see Hallbauer et al. (1973) ;

Lockner et al. (1992)] a brittle (rock or concrete) cylindrical specimen is initially subjected
to a hydrostatic compression to which is, subsequently, superimposed a quasi-statically
incremented contraction in the axial direction. Phenomenologically, the specimen passes
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bias of the stress amplifying effect of crack interaction. The propagation of clusters is
attributed to the cooperative effect, i.e. the interaction driven growth of constituent cracks.

At a critical damage concentration One of the cluster (nascent fault) becomes dominant
and the specimen ceases to be homogeneous when the correlation length eapproaches the
specimen size L. The loss of homogeneity is caused by large difference between the effective
parameters (damage density) of the materials in the interior and exterior of the fault. The
material in the fault interior is strongly heterogeneous, while the exterior volume relaxes
elastically and remains homogeneous. The nascent fault grows in the avalanche mode since
the disordering aspect of the crack growth increases at the expense of the ordering (mean
field) effect of the crack nucleation.

A majority of the continuum mechanics models view the strain localization as being
the quasi-static Hadamard's instability (bifurcation) of the material constitutive description
(Rudnicki and Rice, 1975; Rice, 1976). Assuming that the material is statistically homo­
geneous at the state ofincipient bifurcation the onset oflocalization and the fault orientation
are determined from the condition.

detllo· Ct· 011 = det IIQII = 0 (3)

where Q and C, are the effective acoustic and effective tangential stiffness (elasticity) tensors,
while 0 is the normal to the fault perimeter.

The simplicity, elegance and mathematical clarity of Rudnicki and Rice (1975) model
and condition (3) inspired an interest into the localization failure which is still not abating.
However, the simplicity is often replete with limitations and the models based on condition
(3) were not an exception to this rule. Local, quasi-static continuum models of faulting
predict that a zero-volume fault forms instantaneously across the entire specimen. These
predictions of faultdnematics were refuted by the experimental data (Hallbauer et al.,
1973; Lockner et al.. 1992; Reches and Lockner, 1994) and particle dynamic simulations
(Krajcinovic and Vujosevic, 1998). The strong dependence of the condition (3) on the
details of the constitutive law (Rice, 1976) was another indication that a rational model
must incorporate the statistical aspects of the material and disorder (accumulated damage).

The effect of the dynamic nature of the strain localization and disorder on the specimen
response at the localization transition were the primary inducements for the application of
the particle dynamics model (Krajcinovic and Vujosevic, 1998). The mass of the solid is
lumped into 3535 particles (nodes), connected to their nearest neighbors by central-force
Hookean links of equal stiffness, and forming a two-dimensional triangular lattice. The
spring rupture strengths was taken to be infinite in compression, while the tensile strengths
fci were distributed uniformly, i.e. P(fci) = const. Model induced orientations of the lattice
were minimized by adopting a normal distribution of link lengths.

To match Lockler et al. (1992) specimens the aspect ratio of the lattice is taken to be
equal to 2.5. The loading was also selected to match these tests by subjecting the lattice first
to the biaxial (hydrostatic) compression and, subsequently, to quasi-static and monotonic
contraction in the axial direction. A link was removed when the force it transmits reached
it tensile strength}; ,= fci' The next increment was applied only when the kinetic energy of
the lattice fell below a very small level. A minimum of damping was introduced within the
framework of Varlet algorithm to remove the kinetic energy in each loading step.

Particle dynamics simulations confirmed that the deformation is initially homogeneous
[Fig. 3(a)] prior to the formation of several small faults just ahead of the peak of the force­
contraction curve [Fig. 3(b)]. At the peak one of the bands (fault) grows rapidly, but not
instantaneously, acwss the specimen at the angle suggested by the continuum models. The
compliance of the f:i.ult (along its length) is many times larger than the compliance of the
rest of the specimen. Thus, in the deformation controlled conditions the stresses in the
exterior of the fault must relax and the strain concentration in all other shear bands is
almost entirely eliminated [Fig. 3(c)].

The actual band that will develop into a fault cannot be determined a priori since it
depends on the lattice disorder. It is also difficult to pinpoint the exact state at which the
material ceases to b,~ statistically homogeneous on the specimen scale as ~ -+ L. However,
it is certain that the strain field within the softening regime is not homogeneous. Once the
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specimen ceases to be homogeneous the volume averaging becomes meaningless and the
only meaningful relation is that between the resultant force and system elongation. The
division of the specimen into sub-systems becomes coarser as ~ grows. In the aftermath of
the localization transition he localized band cannot be sub-divided since ~ ~ L.

The simulations were limited to two-dimensional lattices by the available com­
putational capacity. In the absence of micromechanical data (stiffness and strength of the
adhesion between individual grains of granite) it was not possible to match the test data
details quantitatively. Nevertheless, the simulations data qualitatively matched all salient
aspects of the faulting recorded in tests. According to lattice simulations the band orien­
tation was, indeed, found to be 34° while the macro response and patterns of damage
evolution closely match (Fig. 4) the experimental (acoustic emissions) data in Lockner et
al. (1992).

Problems related to the damage modeling are illuminated by Fig. 5. The accumulated
damage (fraction of broken bonds) is initially a linear function of strains. However, near
the peak of stress-strain curve the fraction of broken bonds doubles almost instantaneously.
The plateau reached by the axial strain and damage density within the post-softening regime
is attributed to the fact that the lattice shear stress (aax - alai) decreases below the frictional
(or interlock) resistance to ~;liding within the fault.

At the peak of the force-contraction curve only 6.25% of the links were ruptured. To
test whether the localization onset critically depends on the details of constitutive relations
(Rice, 1976) the "material" is "embrittled" by narrowing the band-width of the link strength
by 25% (decreasing the diff,~rence between the strengths of the weakest and strongest links
from unity to 0.75). Indeed, the fraction of ruptured links at the peak of the stress-strain
curve was reduced (by a fa'~tor of 3) to 2.1 %. In the limit, fault formation in a perfectly
periodic brittle lattice (all links of equal length, strength and stiffness) requires only 0.3%
of ruptured links [Fig. 6(a)]. Twice as many links must be ruptured to cleave a perfect
triangular lattice in uniaxial tension by a macrocrack propagating through a single row of
links [Fig. 6(b)].

In summary, the energy required to break the links prior to the onset of softening
regime depends to a large extent on the band-width of the links strength (damage tolerance)
and is always larger than the energy needed for the brittle fracture of a damage sensitive
specimen subjected to the tensile and/or shear tractions. Even a modest level of disorder
suffices to increase the ener.5Y needed for the localization failure through the evolution of
the diffused damage. The sensitivity of condition (3) to the details of microstructural fabric
is a serious modeling challenge. As the dominant role in damage evolution shifts from the
crack nucleation to interaction and clustering of cracks the governing statistics crosses over
from the averages to extre:me moments of stress and damage distribution. A realistic
analytical description of this complex process must incorporate the dominant role of the
damage and cooperative eff,~ct on the localization onset.

The determination of the fault width, often considered to be a material constant, is an
interesting but non-trivial eKercise. Since the cracks of the fault do not intersect and since
the degree of correlation is not a yes-or-no proposition, the question whether a nearby
crack is a part of the fault does not have a definitive and unambiguous answer. In the
language of statistics the fault volume is not a purely geometrical concept since the distances
between the adjacent cracks are continuously distributed and the crossover length sepa­
rating correlated and non-correlating cracks depends on the crack shapes, sizes, orien­
tations, local state of stress, effective parameters of the specimen, etc. Any deterministic
prediction of this length is, therefore, largely arbitrary. Since the geometry of the fault is
very irregular and its width IS not constant (Fig. 4) the estimate of the proper fault "width"
depends on the resolution, observer and observation scale. However, by definition, the fault
"width" must be always a multiple of the characteristic texture length L m as claimed by
Bazant and Cedolin (1991) for concrete and rocks and Vardoulakis and Graf (1985) for
sand. Furthermore, Sornette et al. (1990) determined the fault length as Lr ex LOr. Unfor­
tunately, the fractal expom:nt Dr = 1.70±0.05 was determined assuming that the propa­
gation of the cluster is dominated by the diffusion-limited aggregation rather than stress
concentrations (cooperative effect).
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(b)

Fig. 6. Failure modes of 1 brittle, geometrically perfect triangular lattice in: (a) shear and (b)
cleavage.

Recalling that the damage is defined by the effect that microcracks have on the effective
properties it is reasonable to measure the fault "width" accordingly. The considered effective
property of the system must reflect two principal aspects of the strain localization process;
disorder and dynamics of the fault growth: Starting from this premise Krajcinovic and
Vujosevic (preprint) measured the fault "width" indirectly by considering the transfer of
elastic energy through the faulted specimen. The distance through which an elastic wave
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cluster separates the specimen into two parts. Thus, the conditions defining the onset of
percolation is

e--+ L asf--+fce (5)

where f and fce are the density and critical density of randomly inserted voids or cracks.
The effective stiffness measured in the percolation tests is actually the secant stiffness

(Krajcinovic, 1996) since the damage remains constant during the process of the stiffness
measurement. The path along which the stiffness is measured during a percolation test
corresponds to the unloading from a state of a deformation process during which the same
defect distribution is realized by the nucleation only (Krajcinovic, 1996).

The density of defects at the elastic percolation transition depends on the topology of
the system and defect geometry. Three aspects of the percolation test are of crucial import­
ance: (a) the defects are randomly distributed throughout the system; (b) the existing
defects are not allowed to grow; and (c) the thermodynamic force G has no effect on
the damage evolution. Nevertheless, the described topological exercise has a mechanical
meaning. Since the spatial distribution of defects is random and the defects do not grow as
a result of the excess energy, a percolation process corresponds to the damage evolution
that is driven exclusively by the defect nucleation. The described conditions are typical of
the case when cracks are subjected to the compressive normal stresses and negligible shear
stresses (such that the SIFs of all cracks are negative). These conditions can be realized
only in the limit of the infinitt: damage tolerance since the damage evolution is independent
of the stress concentrations.

The damage induced by a perfectly random nucleation of defects is, by definition,
isotropic. Manipulating the derivations in Garboczi and Thorpe (1985) the self-consistent
estimates of the components of the stiffness (elastic) tensor of a central-force elastic lattice
can be written in the form

Cijm" = C~mn(1-D) where D = q/qce (6)

typical of damage mechanic~,models. In (6) the superscript "0" stands for pristine lattice
D = 0, q for the fraction of ruptured links and qce for the elastic percolation threshold
which depends only on the lattice geometry. Using the methods of continuum percolation
the expressions identical to (6) were derived for the elastic plate weakened by voids (Xia
and Thorpe, 1988; Krajcinovic et al., 1992; Krajcinovic, 1996) and rectilinear slits (Krajci­
novic et al. 1992b). The parameter D is equal to the porosity (in the case of voids) and to
Budiansky-O'Connell parameter (in the case of slits). Finally, the isotropic (scalar) con­
tinuum models (Lemaitre, 1992) are based on relation (6).

Nominally, the expression (6) for the effective stiffness is applicable only in the limit
of a dilute concentration of d.efects, i.e. ~ « L. As ~ --+ L the largest defect cluster percolates
through the system disconnecting it into two large fragments. In the neighborhood of
percolation threshold (~ --+ L -), the homogeneity is lost on the scale of the specimen and
in the absence of any other scale the geometry of specimen becomes self similar (scale
invariant). Hence, the geometry of the largest defect is fractal in the limit of the infinitely
large specimen L --+ 00. The stress field in the neighborhood of the percolation threshold
cannot be described by the volume averages only. The microstructural disorder and the
attendant stress fluctuations are largest near the percolation threshold.

The self-consistent estimates of the percolation transition are very accurate except for
the case of overlapping (intl~rsecting) defects (Krajcinovic, 1996). The scaling law for the
effective secant modulus Csc<, of the system reduces near the percolation transition is

(7)

wherefis the damage density, r a universal exponent that depends on the defect shape and
orientation and on whether the defects are allowed to overlap or not. Since the exponent r
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is usually larger than one the rate at which the effective secant stiffness changes near the
percolation transition f ~!ce is very slow. The scaling law (8) for the effective secant stiffness
cannot be predicted with any accuracy from the mean field model. For example, according
to the self-consistent micromechanical damage model of type (6) r = 1.

Simulations and finite elements computations indicate that the linear relation between
the damage and effective stiffness (6) is in the case of the random nucleation of defects
accurate until the stiffness is reduced to approximately 15% of its original value (Jasiuk et
al., 1994). The damage evolution in the crossover region, connecting self-consistent regime
(in which the local damage models are applicable) and the percolation regime (within which
the damage can be determined by mean field micromechanical models), is driven by the
interaction of large defect clusters. Nonlinear damage modes suitable for the analyses
within the crossover regime have as yet to be formulated.

It is interesting to note that the elastic energy of vibrations is also localized in the
asymptotic neighborhood of the percolation threshold. Perturbations (fractions) excited
within the defect clw;ter do not spread over the entire sample. The decay length L w of
periodic perturbations with frequency w in a percolating lattice scales as

(8)

where k' ~ 0.35 and 0.27 (Stauffer and Aharoni, 1992) in two and three dimensions,
respectively. In analogy to the strain localization (4) the decay length tends to infinity (and
the density of states or vibrational modes becomes zero) in the static limit (i.e. when the
perturbation frequency approaches zero).

The described damage evolution mode is typical of specimens subjected to the hydro­
static compression, high velocity impact (Mastilovic et al. 1996), comminution (crushing),
creep at small stresses and large temperatures (Vujosevic and Krajcinovic, 1997). It also
takes place during the process of solidification (curing) (Krajcinovic and Mallick, 1995) or
corrosion (Gaudett a:ld Scully, 1994), loss of stiffness in network glasses (Cai and Thorpe,
1989), etc. Finally, the percolation models can be used to select the most accurate mean­
field model. They also prove that in balance the interaction of randomly distributed defects
has, in contradiction to the mean-field micro-mechanical models (Horii and Sahasakmontri,
1990; Iu and Tseng, 1995), a shielding effect.

4.3. Creep rupture ofpolymers
A material expmed to a high temperature environment may fail even when the stresses

are well below its mechanical strength. This failure mode, known as the creep rupture, is
of substantial importance in design. A variety of empirical, phenomenological (Hult, 1974)
and micromechanical (Riedel, 1987) models were proposed to predict the time to creep
failure as a function of the temperature and applied stress. A majority of mechanics models
are not only deterministic but are based on the assumption that the influence of the
temperature on the system response and failure can be introduced by adjusting the consti­
tutive description of the material. Material science models (Regel' et al., 1974) treat the
temperature as the basic stimulus that enhances the atom mobility and intensifies the
mobility of dislocation motion (ductile slip) and rate of rupture of atomic bonds (damage
evolution).

The nano-structure of epoxy resins, that consists of a set of dense nodules inter­
connected by links of lower density (Krajcinovic and Mallick, 1995), resembles a three­
dimensional lattice. The stochastic nature of the damage evolution in the lattice, related to
the spatially and temporally random fluctuations of the temperatures, can be introduced
using the absolute reaction-rate theory of Eyring (1936) [see also Termonia et al. (1985)].
According to this theory the kinetics of the damage evolution (bond ruptures) is related to
the probability that the kinetic energy supplied by the temperature fluctuations and strain
energy will exceed the energy needed to dissociate two adjacent atoms. The probability that
the ith lattice link will rupture during the time interval At is (Vujosevic and Krajcinovic,
1997)
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(9)

where j; is the force transmitted by the link of stiffness k, while to, T, Uo and kb are the
period of the free vibration of an atom, temperature (in degrees of Kelvin), apparent
activation energy and Boltzmann constant. Relation between conditions (9) and (2) is
discussed by Krausz and Krausz (1988), Lawn (1993) and Krajcinovic (1996). The link
stiffness k can be estimated from the morphology of the network of constituent molecular
chains (Krajcinovic and Mallick, 1995).

The resin nano-structure is in Vujosevic and Krajcinovic (1997) model approximated
by a two-dimensional triangular central-force lattice which was in its pristine state ordered,
i.e. all links were of equal length, strength and stiffness. Enforcing periodic boundary
conditions along its vertical edges the lattice is rendered infinite in the horizontal direction
and the effect of the specimen shape is eliminated. The simulations were performed for
lattices of five different size~ (A = 12, 16, 20, 24, 32, where A is the number of link rows in
the vertical direction) and three different values of the load parameter ex = (ff /2kU) 10
(ex = 0.001,0.01 and 0.03, see Figs 7,8). The subscript "0" refers to the pristine state of the
system.

The average temperature was kept fixed at 0.75 of the homologous temperature and
stationary tensile tractions were applied to a rigid bar on the top end in the vertical direction
while the bottom end was hinged to a rigid foundation. Link forces j; were computed using
truss analyses and the sequence of link ruptures was determined by Monte-Carlo lottery in
conjunction with the stocha,tic rupture conditions (9). Hence, the disorder is attributed to
the random fluctuations of temperature rather than being frozen (quenched) into the lattice.

The time to failure depends strongly on the load parameter IX and weakly on the
specimen size (Fig. 8). The progressive loss of the axial stiffness is also depicted in Fig. 8.
Damage evolution is in the case of negligible tensile stresses driven by the random fluc­
tuations of the temperature and is similar to that described in the case of percolation. In
the limit of vanishing ex the damage at the creep rupture tends to the percolation limit (6)
of qce ~ 0.35 (where qce is the fraction of ruptured bonds at the percolation transition). The
increase of the strain rate in the tertiary phase, manifested by the precipitous decline of
lattice stiffness (Fig. 8), is related to the formation of a large defect cluster and attendant
stress concentration.

Simulation results are plotted on the left side while the results of a simple analytical
model are shown on the right side of Fig. 9. This one-parameter model is based on the
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Fig. 7. Creep strain plotted vs time for two values of the load ratio:x.
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Fig. 8. The normalized effective axial stiffness of the laltice plotted vs the fraction of ruptured links
for two values of the load ratio ct.

damage parameter D(t) = [CO - C(t)]/CO identical to (6b). The relation between the rates
of strain and damage are derived from the Tobolsky-Eyring model [according to which the
strain is proportional to the logarithm of the elapsed time, Vujosevic and Krajcinovic
(1997)]. The final form of this simple (but nonlinear) uniaxial damage model

(10)

fits the simulation curve (along its entire length) in a very satisfactory fashion (Fig. 9). An
even simpler mean field model (that neglects the stress concentrations caused by the
accumulated damage) provides only an upper bound on the time to failure that exceeded
the simulation data hy a factor of eight for the largest value of parameter iX. Hence,
the damage accumulation driven by the stress concentrations cannot be neglected in the
predictions of the response within the tertiary creep and time to failure.

The lattice model of a resin is morphologically correct only on the molecular (nodule)
scale. However, the simulations in Vujosevic and Krajcinovic (1997) show that the time to
failure depends on the specimen size only if L ~ 0.5 ,um. The independence on the scale,
corroborated by the test data in Regel' et al. (1974), is related to the weak effect of the
specimen size on the crack nucleation events. Hence, the size independence of the time to
failure becomes an issue only for the pre-damaged specimens and when the applied stress
is a dominant cause of the damage evolution.

5. SUMMARY AND CONCLUSIONS

This review was prompted by a frequently held opinion that the damage parameter is
not correlated to the ~,pecimen strength and that the damage mechanics models cannot be
used to estimate the failure threshold. While only partially true, this opinion is generalized
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Fig. 9. Creep strain plotted vs time (a) simulations and (b) analytical model, and effective lattice
stiffness plotted vs time (c) simulations and (d) analytical model.

without regard to the circumstances, selection of the damage parameter and damage mode.
A proper local micromechanical damage model provides a relation between the microcrack
density and effective transport properties of the solid assuming it to be statistically homo­
geneous or self-similar (Krajcinovic and Mastilovic, 1995). Thus, if the onset of a transition
(bifurcation) to a state of failure can be predicted from the effective transport properties of
the thermodynamic state at the incipient failure it logically follows that the onset of this
failure can be defined in terms of the critical value of the micromechanically correct damage
parameter as well.

Unstable growth of a single Griffith's crack is a typical example of a brittle failure
that has little in common to the distributed damage and/or damage mechanics. Damage
mechanics is applicable to the case of a stable evolution of microcracks. This study sum­
marizes and compares three different failure modes characterized by the damage evolution
that is, prior to the failure, stable and dominated by random nucleation of defects. The loss
of homogeneity is attributed to the increase of the defect cluster size ~ -+ L that is common
to the three considered failure modes. The difference between these modes is related to the
mechanism that drive the cluster growth and the rate of the cluster growth.

In the case of strain localization the growth of the defect cluster (fault) is attributed
to the interaction of cooperative effect. The energy release rate G is distributed along the
band perimeter. The local, mean field damage models (that do not account for the defect
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interaction) cannot be expected to provide a very accurate prediction of the localization
onset which depends on the local stresses amplified by the crack interaction. After the loss
of homogeneity on the specimen scale the fault grows very rapidly and the softening part
of the force-contraction curve is very steep. This reduces the problem of the prediction of
the localization onset to the determination of the force and displacement at the peak of the
curve. Assuming the curve to be C1 continuous at the peak a proper micromechanical
damage mechanics model should suffice to provide a reasonably good estimate of the
localization onset [see: Krajcinovic (1996) for a related problem].

The mean field micromechanical estimates of the percolation threshold, at which the
cluster of cracks transects the specimen, are notoriously accurate. This should be expected
since the condition (2) is never violated due to the fact that the damage evolution is not
dependent on stresses, defect interaction and stress distributions. The morphology of the
defect clusters is gossamer-like. Naturally, mean-field models fail to describe accurately the
states near the percolation threshold.

The creep rupture mode depends on the temperature and stresses. When the tem­
perature dominates the damage evolution process is random preserving the material hom­
ogeneity until imminent rupture. Defect clusters are in shape similar to those characterizing
the percolation. Simple damage models are quite accurate for the determination of time to
rupture. Somewhat more involved damage models are necessary to model the tertiary creep
phase. The accuracy degenerates at larger tensile stresses. Defect clusters are tighter and
the stress concentrati:ms (extreme statistics of stress distribution) large enough to become
the dominant force that drives the damage evolution.

In summary, the qualitative studies in this paper indicate that rather simple, local
damage micromechanical models may, under considered circumstances, provide accurate
estimates of failure onsets. All considered cases are characterized by the absence of the long
range tensile stresse~,. Since the utilization of materials with inferior tensile strengths,
susceptible to brittle deformation, is in design limited to structures in which the long range
tensile stresses are absent the role of damage mechanics in estimating the onset of failure is
after all, more substantial than was originally suspected.
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